Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 15, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36697756

RESUMO

Lipid peroxidation is a process which is key in cell signaling and disease, it is exploited in cancer therapy in the form of photodynamic therapy. The appearance of hydrophilic moieties within the bilayer's hydrocarbon core will dramatically alter the structure and mechanical behavior of membranes. Here, we combine viscosity sensitive fluorophores, advanced microscopy, and X-ray diffraction and molecular simulations to directly and quantitatively measure the bilayer's structural and viscoelastic properties, and correlate these with atomistic molecular modelling. Our results indicate an increase in microviscosity and a decrease in the bending rigidity upon peroxidation of the membranes, contrary to the trend observed with non-oxidized lipids. Fluorescence lifetime imaging microscopy and MD simulations give evidence for the presence of membrane regions of different local order in the oxidized membranes. We hypothesize that oxidation promotes stronger lipid-lipid interactions, which lead to an increase in the lateral heterogeneity within the bilayer and the creation of lipid clusters of higher order.

2.
Chem Soc Rev ; 51(16): 6965-7045, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35686606

RESUMO

The increasing energy demand and environmental issues caused by the over-exploitation of fossil fuels render the need for renewable, clean, and environmentally benign energy sources unquestionably urgent. The zero-emission energy carrier, H2 is an ideal alternative to carbon-based fuels especially when it is generated photocatalytically from water. Additionally, the photocatalytic conversion of CO2 into chemical fuels can reduce the CO2 emissions and have a positive environmental and economic impact. Inspired by natural photosynthesis, plenty of artificial photocatalytic schemes based on porphyrinoids have been investigated. This review covers the recent advances in photocatalytic H2 production and CO2 reduction systems containing porphyrin or phthalocyanine derivatives. The unique properties of porphyrinoids enable their utilization both as chromophores and as catalysts. The homogeneous photocatalytic systems are initially described, presenting the various approaches for the improvement of photosensitizing activity and the enhancement of catalytic performance at the molecular level. On the other hand, for the development of the heterogeneous systems, numerous methods were employed such as self-assembled supramolecular porphyrinoid nanostructures, construction of organic frameworks, combination with 2D materials and adsorption onto semiconductors. The dye sensitization on semiconductors opened the way for molecular-based dye-sensitized photoelectrochemical cells (DSPECs) devices based on porphyrins and phthalocyanines. The research in photocatalytic systems as discussed herein remains challenging since there are still many limitations making them unfeasible to be used at a large scale application before finding a large-scale application.


Assuntos
Porfirinas , Biomimética , Dióxido de Carbono/química , Isoindóis , Fotossíntese , Porfirinas/química
3.
Sci Adv ; 8(14): eabm2094, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394846

RESUMO

Misfolding of secretory proteins in the endoplasmic reticulum (ER) features in many human diseases. In α1-antitrypsin deficiency, the pathogenic Z variant aberrantly assembles into polymers in the hepatocyte ER, leading to cirrhosis. We show that α1-antitrypsin polymers undergo a liquid:solid phase transition, forming a protein matrix that retards mobility of ER proteins by size-dependent molecular filtration. The Z-α1-antitrypsin phase transition is promoted during ER stress by an ATF6-mediated unfolded protein response. Furthermore, the ER chaperone calreticulin promotes Z-α1-antitrypsin solidification and increases protein matrix stiffness. Single-particle tracking reveals that solidification initiates in cells with normal ER morphology, previously assumed to represent a healthy pool. We show that Z-α1-antitrypsin-induced hypersensitivity to ER stress can be explained by immobilization of ER chaperones within the polymer matrix. This previously unidentified mechanism of ER dysfunction provides a template for understanding a diverse group of related proteinopathies and identifies ER chaperones as potential therapeutic targets.

4.
J Photochem Photobiol B ; 225: 112346, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34736070

RESUMO

An eye lens is constantly exposed to the solar UV radiation, which is considered the most important external source of age-related changes to eye lens constituents. The accumulation of modifications of proteins and lipids with age can eventually lead to the development of progressive lens opacifications, such as cataracts. Though the impact of solar UV radiation on the structure and function of proteins is actively studied, little is known about the effect of photodamage on plasma membranes of lens cells. In this work we exploit Fluorescence Lifetime Imaging Microscopy (FLIM), together with viscosity-sensitive fluorophores termed molecular rotors, to study the changes in viscosity of plasma membranes of porcine eye lens resulting from two different types of photodamage: Type I (electron transfer) and Type II (singlet oxygen) reactions. We demonstrate that these two types of photodamage result in clearly distinct changes in viscosity - a decrease in the case of Type I damage and an increase in the case of Type II processes. Finally, to simulate age-related changes that occur in vivo, we expose an intact eye lens to UV-A light under anaerobic conditions. The observed decrease in viscosity within plasma membranes is consistent with the ability of eye lens constituents to sensitize Type I photodamage under natural irradiation conditions. These changes are likely to alter the transport of metabolites and predispose the whole tissue to the development of pathological processes such as cataracts.


Assuntos
Cristalino/efeitos da radiação , Raios Ultravioleta , Animais , Membrana Celular/efeitos da radiação , Técnicas In Vitro , Oxigênio Singlete/metabolismo , Suínos , Viscosidade
5.
Phys Chem Chem Phys ; 23(43): 24545-24549, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704576

RESUMO

We have studied the suitability of using a molecular rotor-based steady-state fluorometric assay for evaluating changes in both the conformation and the viscosity of collagen-like peptide solutions. Our results indicate that a positive charge incorporated on the hydrophobic tail of the BODIPY molecular rotor favours the dye specificity as a reporter for viscosity of these solutions.


Assuntos
Peptídeos/química , Compostos de Boro/química , Colágeno/química , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Soluções , Espectrometria de Fluorescência , Viscosidade
6.
J Biomed Opt ; 25(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33331150

RESUMO

SIGNIFICANCE: Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles. AIM: The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment. APPROACH: FLIM together with viscosity-sensitive boron dipyrromethene-based fluorescent molecular rotor was used to map the fluidity of the cell's membrane. Chemical analysis of membrane lipid composition was performed with time-of-flight secondary ion mass spectrometry (ToF-SIMS). RESULTS: We detected a significant steady increase in membrane viscosity in viable cancer cells, both in cell monolayers and tumor spheroids, upon prolonged treatment with cisplatin, as well as in cisplatin-adapted cell line. ToF-SIMS revealed correlative changes in lipid profile of cisplatin-treated cells. CONCLUSIONS: These results suggest an involvement of membrane viscosity in the cell adaptation to the drug and in the acquisition of drug resistance.


Assuntos
Cisplatino , Neoplasias , Cisplatino/farmacologia , Corantes Fluorescentes , Microscopia de Fluorescência , Organelas , Viscosidade
7.
Sci Rep ; 10(1): 14063, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820221

RESUMO

Membrane fluidity plays an important role in many cell functions such as cell adhesion, and migration. In stem cell lines membrane fluidity may play a role in differentiation. Here we report the use of viscosity-sensitive fluorophores based on a BODIPY core, termed "molecular rotors", in combination with Fluorescence Lifetime Imaging Microscopy, for monitoring of plasma membrane viscosity changes in mesenchymal stem cells (MSCs) during osteogenic and chondrogenic differentiation. In order to correlate the viscosity values with membrane lipid composition, the detailed analysis of the corresponding membrane lipid composition of differentiated cells was performed by time-of-flight secondary ion mass spectrometry. Our results directly demonstrate for the first time that differentiation of MSCs results in distinct membrane viscosities, that reflect the change in lipidome of the cells following differentiation.


Assuntos
Compostos de Boro/química , Diferenciação Celular , Corantes Fluorescentes/química , Fluidez de Membrana , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência/métodos , Viscosidade , Antígenos CD/análise , Membrana Celular , Células Cultivadas , Condrogênese , Humanos , Osteogênese , Espectrometria de Massa de Íon Secundário
8.
Chem Sci ; 12(7): 2604-2613, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34164028

RESUMO

Lipid packing in cellular membranes has a direct effect on membrane tension and microviscosity, and plays a central role in cellular adaptation, homeostasis and disease. According to conventional mechanical descriptions, viscosity and tension are directly interconnected, with increased tension leading to decreased membrane microviscosity. However, the intricate molecular interactions that combine to build the structure and function of a cell membrane suggest a more complex relationship between these parameters. In this work, a viscosity-sensitive fluorophore ('molecular rotor') is used to map changes in microviscosity in model membranes under conditions of osmotic stress. Our results suggest that the relationship between membrane tension and microviscosity is strongly influenced by the bilayer's lipid composition. In particular, we show that the effects of increasing tension are minimised for membranes that exhibit liquid disordered (Ld) - liquid ordered (Lo) phase coexistence; while, surprisingly, membranes in pure gel and Lo phases exhibit a negative compressibility behaviour, i.e. they soften upon compression.

9.
ACS Appl Mater Interfaces ; 11(40): 36307-36315, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513373

RESUMO

Molecular mobility in neuronal plasma membranes is a crucial factor in brain function. Microscopic viscosity is an important parameter that determines molecular mobility. This study presents the first direct measurement of the microviscosity of plasma membranes of live neurons. Microviscosity maps were obtained using fluorescence lifetime imaging of environment-sensing dyes termed "molecular rotors". Neurons were investigated both in the basal state and following common neurodegenerative stimuli, excitotoxicity, or oxidative stress. Both types of neurotoxic challenges induced microviscosity decrease in cultured neurons, and oxidant-induced membrane fluidification was counteracted by the wide-spectrum neuroprotectant, the H3 peptide. These results provide new insights into molecular mobility in neuronal membranes, paramount for basic brain function, and suggest that preservation of membrane stability may be an important aspect of neuroprotection in brain insults and neurodegenerative disorders.


Assuntos
Membrana Celular/fisiologia , Corantes Fluorescentes/metabolismo , Neurônios/citologia , Neuroproteção , Estresse Oxidativo , Animais , Compostos de Boro/química , Membrana Celular/efeitos dos fármacos , Corantes Fluorescentes/química , Células HeLa , Humanos , Peróxido de Hidrogênio/toxicidade , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fenômenos Ópticos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Viscosidade
10.
Biophys J ; 116(10): 1984-1993, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31053255

RESUMO

Gravity-sensitive cellular responses are regularly observed in both specialized and nonspecialized cells. One potential mechanism for this sensitivity is a changing viscosity of the intracellular organelles. Here, we report a novel, to our knowledge, viscosity-sensitive molecular rotor based on mesosubstituted boron-dipyrrin used to investigate the response of viscosity of cellular membranes to hypergravity conditions created at the large diameter centrifuge at the European Space Agency Technology Centre. Mouse osteoblastic (MC3T3-E1) and endothelial (human umbilical vein endothelial cell) cell lines were tested, and an increase in viscosity was found with increasing hypergravity loading. This response is thought to be primarily biologically driven, with the potential for a small, instantaneous physical mechanism also contributing to the observed effect. This work provides the first, to our knowledge, quantitative data for cellular viscosity changes under hypergravity, up to 15 × g.


Assuntos
Gravitação , Espaço Intracelular/metabolismo , Células 3T3 , Animais , Fenômenos Biomecânicos , Compostos de Boro/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos , Viscosidade
11.
Soft Matter ; 14(46): 9466-9474, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30427370

RESUMO

Amyloid deposits of aggregated beta-amyloid Aß(1-42) peptides are a pathological hallmark of Alzheimer's disease. Aß(1-42) aggregates are known to induce biophysical alterations in cells, including disruption of plasma membranes. We investigated the microviscosity of plasma membranes upon interaction with oligomeric and fibrillar forms of Aß(1-42). Viscosity-sensing fluorophores termed molecular rotors were utilised to directly measure the microviscosities of giant plasma membrane vesicles (GPMVs) and plasma membranes of live SH-SY5Y and HeLa cells. The fluorescence lifetimes of membrane-inserting BODIPY-based molecular rotors revealed a decrease in bilayer microviscosity upon incubation with Aß(1-42) oligomers, while fibrillar Aß(1-42) did not significantly affect the microviscosity of the bilayer. In addition, we demonstrate that the neuroprotective peptide H3 counteracts the microviscosity change induced by Aß(1-42) oligomers, suggesting the utility of H3 as a neuroprotective therapeutic agent in neurodegenerative disorders and indicating that ligand-induced membrane stabilisation may be a possible mechanism of neuroprotection during neurodegenerative disorders such as Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Compostos de Boro/farmacologia , Membrana Celular/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Fragmentos de Peptídeos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/fisiologia , Humanos , Neuropeptídeos/farmacologia , Viscosidade
12.
Methods Appl Fluoresc ; 6(3): 034001, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29611817

RESUMO

Surface functionalisation with viscosity sensitive dyes termed 'molecular rotors' can potentially open up new opportunities in sensing, for example for non-invasive biological viscosity imaging, in studying the effect of shear stress on lipid membranes and in cells, and in imaging contacts between surfaces upon applied pressure. We have functionalised microscope slides with BODIPY-based molecular rotor capable of viscosity sensing via its fluorescence lifetime. We have optimised functionalisation conditions and prepared the slides with the BODIPY rotor attached directly to the surface of glass slides and through polymer linkers of 5 kDa and 40 kDa in mass. The slides were characterised for their sensitivity to viscosity, and used to measure viscosity of supported lipid bilayers during photooxidation, and of giant unilamellar vesicles lying on the surface of the slide. We conclude that our functionalised slides show promise for a variety of viscosity sensing applications.

13.
ACS Nano ; 12(5): 4398-4407, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29648785

RESUMO

Microscopic viscosity (microviscosity) is a key determinant of diffusion in the cell and defines the rate of biological processes occurring at the nanoscale, including enzyme-driven metabolism and protein folding. Here we establish a rotor-based organelle viscosity imaging (ROVI) methodology that enables real-time quantitative mapping of cell microviscosity. This approach uses environment-sensitive dyes termed molecular rotors, covalently linked to genetically encoded probes to provide compartment-specific microviscosity measurements via fluorescence lifetime imaging. ROVI visualized spatial and temporal dynamics of microviscosity with suborganellar resolution, reporting on a microviscosity difference of nearly an order of magnitude between subcellular compartments. In the mitochondrial matrix, ROVI revealed several striking findings: a broad heterogeneity of microviscosity among individual mitochondria, unparalleled resilience to osmotic stress, and real-time changes in microviscosity during mitochondrial depolarization. These findings demonstrate the use of ROVI to explore the biophysical mechanisms underlying cell biological processes.


Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Imagem Óptica , Organelas/química , Animais , Compostos de Boro/síntese química , Células COS , Células Cultivadas , Chlorocebus aethiops , Corantes Fluorescentes/síntese química , Ligantes , Modelos Moleculares , Viscosidade
14.
Phys Chem Chem Phys ; 19(37): 25252-25259, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28718466

RESUMO

Microviscosity is a key parameter controlling the rate of diffusion and reactions on the microscale. One of the most convenient tools for measuring microviscosity is by fluorescent viscosity sensors termed 'molecular rotors'. BODIPY-based molecular rotors in particular proved extremely useful in combination with fluorescence lifetime imaging microscopy, for providing quantitative viscosity maps of living cells as well as measuring dynamic changes in viscosity over time. In this work, we investigate several new BODIPY-based molecular rotors with the aim of improving on the current viscosity sensing capabilities and understanding how the structure of the fluorophore is related to its function. We demonstrate that due to subtle structural changes, BODIPY-based molecular rotors may become sensitive to temperature and polarity of their environment, as well as to viscosity, and provide a photophysical model explaining the nature of this sensitivity. Our data suggests that a thorough understanding of the photophysics of any new molecular rotor, in environments of different viscosity, temperature and polarity, is a must before moving on to applications in viscosity sensing.

15.
Chem Sci ; 8(5): 3523-3528, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28580097

RESUMO

The plasma membranes of cells within the eye lens play an important role in metabolite transport within the avascular tissue of the lens, maintaining its transparency over the entire lifespan of an individual. Here we use viscosity-sensitive 'molecular rotors' to map the microscopic viscosity within these unusual cell membranes, establishing that they are characterised by an unprecedentedly high degree of lipid organisation.

16.
Biomaterials ; 139: 195-201, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28622603

RESUMO

Changes in microscopic viscosity and macromolecular crowding accompany the transition of proteins from their monomeric forms into highly organised fibrillar states. Previously, we have demonstrated that viscosity sensitive fluorophores termed 'molecular rotors', when freely mixed with monomers of interest, are able to report on changes in microrheology accompanying amyloid formation, and measured an increase in rigidity of approximately three orders of magnitude during aggregation of lysozyme and insulin. Here we extend this strategy by covalently attaching molecular rotors to several proteins capable of assembly into fibrils, namely lysozyme, fibrinogen and amyloid-ß peptide (Aß(1-42)). We demonstrate that upon covalent attachment the molecular rotors can successfully probe supramolecular assembly in vitro. Importantly, our new strategy has wider applications in cellulo and in vivo, since covalently attached molecular rotors can be successfully delivered in situ and will colocalise with the aggregating protein, for example inside live cells. This important advantage allowed us to follow the microscopic viscosity changes accompanying blood clotting and during Aß(1-42) aggregation in live SH-SY5Y cells. Our results demonstrate that covalently attached molecular rotors are a widely applicable tool to study supramolecular protein assembly and can reveal microrheological features of aggregating protein systems both in vitro and in cellulo not observable through classical fluorescent probes operating in light switch mode.


Assuntos
Compostos de Boro/química , Carbocianinas/química , Corantes Fluorescentes/química , Agregados Proteicos , Peptídeos beta-Amiloides/química , Linhagem Celular , Fibrinogênio/química , Humanos , Insulina/química , Microscopia Eletrônica de Transmissão , Sondas Moleculares , Muramidase/química , Nanoconjugados/química , Imagem Óptica , Fragmentos de Peptídeos/química , Viscosidade
17.
Sci Rep ; 7: 41097, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134273

RESUMO

The microscopic viscosity plays an essential role in cellular biophysics by controlling the rates of diffusion and bimolecular reactions within the cell interior. While several approaches have emerged that have allowed the measurement of viscosity and diffusion on a single cell level in vitro, the in vivo viscosity monitoring has not yet been realized. Here we report the use of fluorescent molecular rotors in combination with Fluorescence Lifetime Imaging Microscopy (FLIM) to image microscopic viscosity in vivo, both on a single cell level and in connecting tissues of subcutaneous tumors in mice. We find that viscosities recorded from single tumor cells in vivo correlate well with the in vitro values from the same cancer cell line. Importantly, our new method allows both imaging and dynamic monitoring of viscosity changes in real time in live animals and thus it is particularly suitable for diagnostics and monitoring of the progress of treatments that might be accompanied by changes in microscopic viscosity.


Assuntos
Corantes Fluorescentes/química , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Neoplasias/patologia , Animais , Compostos de Boro/química , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Viscosidade , Imagem Corporal Total
18.
Chem Commun (Camb) ; 52(90): 13269-13272, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27775102

RESUMO

Molecular rotors have emerged as versatile probes of microscopic viscosity in lipid bilayers, although it has proved difficult to find probes that stain both phases equally in phase-separated bilayers. Here, we investigate the use of a membrane-targeting viscosity-sensitive fluorophore based on a thiophene moiety with equal affinity for ordered and disordered lipid domains to probe ordering and viscosity within artificial lipid bilayers and live cell plasma membranes.


Assuntos
Membrana Celular/química , Imagem Molecular , Tiofenos/química , Linhagem Celular , Sobrevivência Celular , Humanos , Bicamadas Lipídicas/química , Fenômenos Mecânicos , Conformação Molecular , Simulação de Dinâmica Molecular
19.
Phys Chem Chem Phys ; 17(28): 18393-402, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26104504

RESUMO

In order to fully understand the dynamics of processes within biological lipid membranes, it is necessary to possess an intimate knowledge of the physical state and ordering of lipids within the membrane. Here we report the use of three molecular rotors based on meso-substituted boron-dipyrrin (BODIPY) in combination with fluorescence lifetime spectroscopy to investigate the viscosity and phase behaviour of model lipid bilayers. In phase-separated giant unilamellar vesicles, we visualise both liquid-ordered (Lo) and liquid-disordered (Ld) phases using fluorescence lifetime imaging microscopy (FLIM), determining their associated viscosity values, and investigate the effect of composition on the viscosity of these phases. Additionally, we use molecular dynamics simulations to investigate the orientation of the BODIPY probes within the bilayer, as well as using molecular dynamics simulations and fluorescence correlation spectroscopy (FCS) to compare diffusion coefficients with those predicted from the fluorescence lifetimes of the probes.


Assuntos
Compostos de Boro/química , Bicamadas Lipídicas/química , Difusão , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência , Lipossomas Unilamelares/química , Viscosidade
20.
Org Biomol Chem ; 13(12): 3792-802, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25703541

RESUMO

We report the synthesis of four new cationic dipolar push­pull dyes, together with an evaluation of their photophysical and photobiological characteristics pertinent to imaging membranes by fluorescence and second harmonic generation (SHG). All four dyes consist of an N,N-diethylaniline electron-donor conjugated to a pyridinium electron-acceptor via a thiophene bridge, with either vinylene (­CH=CH­) or ethynylene (­C≡C­) linking groups, and with either singly-charged or doubly-charged pyridinium terminals. The absorption and fluorescence behavior of these dyes were compared to a commercially available fluorescent membrane stain, the styryl dye FM4-64. The hyperpolarizabilities of all dyes were compared using hyper-Rayleigh scattering at 800 nm. Cellular uptake, localization, toxicity and phototoxicity were evaluated using tissue cell cultures (HeLa, SK-OV-3 and MDA-231). Replacing the central alkene bridge of FM4-64 with a thiophene does not substantially change the absorption, fluorescence or hyperpolarizability, whereas changing the vinylene-links to ethynylenes shifts the absorption and fluorescence to shorter wavelengths, and reduces the hyperpolarizability by about a factor of two. SHG and fluorescence imaging experiments in live cells showed that the doubly-charged thiophene dyes localize in plasma membranes, and exhibit lower internalization rates compared to FM4-64, resulting in less signal from the cell cytosol. At a typical imaging concentration of 1 µM, the doubly-charged dyes showed no significant light or dark toxicity, whereas the singly-charged dyes are phototoxic even at 0.5 µM. The doubly-charged dyes showed phototoxicity at concentrations greater than 10 µM, although they do not generate singlet oxygen, indicating that the phototoxicity is type I rather than type II. The doubly-charged thiophene dyes are more effective than FM4-64 as SHG dyes for live cells.


Assuntos
Membrana Celular/química , Corantes/química , Tiofenos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Modelos Moleculares , Dinâmica não Linear , Fenômenos Ópticos , Espectrometria de Fluorescência , Eletricidade Estática , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...